Loading parquet files into s3 using spark dataframe

I am new to astronomer/airflow, I am trying to execute pyspark ETL script using airflow.

Scenario:
Reading json file from s3 location with the defined schema in S3. Adding a date column at last for partition and loading as parquet file into different s3 location.

Executing code:
dataframe = sqlContext.read.schema(schema_string).json(s3_file_prefixes) --got success
dataframe = adding_date_column_function(dataframe, ‘system_timestamp’) --got success
dataframe.write.partitionBy(‘date_column’).format(“parquet”).mode(“append”).save(“s3://bucket_name/key_prefix”) --step failed

Error:

py4j.protocol.Py4JJavaError: An error occurred while calling o58.save.
: org.apache.hadoop.fs.UnsupportedFileSystemException: No FileSystem for scheme "s3"

Requirement.txt:
low-code-dags==0.8.1

PyMySQL==1.0.2

dbt==0.20.2

apache-airflow-providers-qubole==1.0.2

apache-airflow-providers-snowflake==1.1.1

snowflake-connector-python==2.4.1

snowflake-sqlalchemy==1.2.4

SQLAlchemy==1.3.23

apache-airflow-providers-apache-spark

apache-airflow-providers-jdbc

boto

apache-airflow-providers-amazon

apache-airflow[s3,jdbc,hdfs]

I got stuck in the step while trying to write data frame to parquet file. Tried multiple options but couldn’t pass through, can you please help me where exactly I did it wrong or if any jars has to be added? Please let me know if you need additional info on this.

Thanks in advance.